
XJava
High-level Multicore Programming

Frank Otto, Victor Pankratius, Walter F. Tichy
Institute for Program Structures and Data Organization / University of Karlsruhe, Germany

Contact: Frank Otto (otto@ipd.uka.de)

public void => Block read(File f) {

Iterator i = f.blockIterator ();

while(i.hasNext()) { push (Block) i.next(); }

}

public Block => Block compress() {

work(Block b) { push b.compressBlock (); }

}

public Block => void write(File f) {

work(Block b) { f.add(b); /* no push */ }

}

read(inFile) => compress() => write(outFile);

• read(File f) reads a file f, divides it into Blocks,

and puts them (in form of a data stream) on the output

• compress() expects a stream of Blocks and produces
a stream of compressed Blocks

• write(File f) expects a stream of Blocks and stores
them to a file f

• The pipeline expression (1 LOC!) creates the whole
parallelized file compression
• similar to Unix filters

• The programmer does not need to care about
synchronization

A simple pipeline example

A more complex example:
a real-world parallel application
(biological data analysis)

void => X stage1() {...}

X => Y stage2() {m1() ||| m2(); }

Y => Z stage3() {m3() ||| m456() ||| m78() ||| m9() ||| m10(); }

Z => void stage4() {...}

...

Y => Z m456() {m4() => m5() => m6(); }

Y => Z m78() {m7() => m8(); }

...

X => Y m1() {...}

...

Y => Z m10() {m101() ||| m102() ||| m103(); }

stage1() =>* stage2() =>* stage3() => stage4();

Improvements for Software Engineering

Preliminary Results

Different layers of
abstraction for
nested parallelism:
pipeline, task and
data parallelism

Split-join data flow

Implementing this in
common threaded
code is painful

Skeleton of this architecture in XJava code:

Tasks are declared
like methods; instead
of a return type, they
have input and
output types

A work block is
repeatedly executed
until all elements are
processed

„=>“ connects tasks

and generates
parallelism

XJava

XJava Language Design

public Object => String foo() {

/* task body */

}

• Benchmark programs

• open-source desktop search application

• several smaller programs: text transformation, sorting
algorithms, etc.

• Code savings up to 40% over threaded Java

• Good speedups over sequential Java (e.g. between
2 and 3.5 on a quadcore, up to 31.5 on a Niagara2)

• Periodic tasks define exactly one work block for repeated execution

• Non-periodic tasks do not define a work block, but may contain
parallel expressions for introducing nested parallelism

• a push statement puts an object to the output stream

• Combine tasks through operators to parallel expressions:
• „=>“ creates a pipe expression (e.g. pipelines, master/worker,

producer/consumer)

• „|||“ creates a concurrent expression, i.e. makes independent

tasks run concurrently (e.g. task or data parallelism)

• type safety: compiler checks if combined tasks (i.e. input and output
types) „fit together“

• Tasks
• specialized methods that are concurrently executable

• declared in classes or interfaces

• inherit or override other tasks

• can be private, static, abstract, final, …

• typed input and output ports for receiving and generating streams of data

• Language extension of Java

• Parallel programming without explicit threading

• Goal: „what you see is what you get“ parallelism

• Idea: unify object-orientation, stream programming, and parallel patterns

• XJava compiler: XJava to Java (or bytecode)

• XJava runtime: task pool, executor service, and scheduler

• Write parallel general-purpose applications in a „what you see
is what you get“ style

• Better code understanding, „less indeterminism“

• Performance gains

• Exploit object-oriented parallelism on all fronts

• Abstraction

• Hide confusing details wherever it is possible

• Fewer bugs & easier debugging

• Intuitive language constructs & implicit parallelism: less error-prone

• Compiler/debugger: more knowledge about semantics

• Code savings & higher productivity

XJava
program

Java
program

XJava
runtime

Java VM

OS scheduler

XJava
compiler

Stage

1 Stage

2 Stage

3 Stage

4

M1

M2

M3

M4

M10

M5

M10

(Instance

1)Input bin

1

Input bin

2

Input bin

m

Result

bin

1

Result

bin

2

Result

bin

m

M10

(Instance

2)

M10
(Instance

m)

R
e
su

lt

D
a
ta

C
o
n
so

lid
a
ti
o
n

D
a
ta

P
a
rt

iti
o
n

in
g

P
ip

e
li

n
e

L
a

y
e
r

M
o

d
u

le

L
a
y
e

r
D

a
ta

L
a

y
e

r

Pre-
Processing

Post-
Processing

In
p
u

t

d
a
ta

R
e
su

lt

d
a
ta

M7 M8

M6

M9

Date: May 2009

	Seite1

